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ON THE STABILITY OF THREE-DIMENSIONAL BOUNDARY LAYERS

PART 2: SECONDARY INSTABILITY *

ERIK JANKE AND PONNAMPALAM BALAKUMAR

Abstract. The secondary instability of three-dimensional incompressible boundary layers is studied

using Floquet theory. Starting from the equilibrium solutions that we obtained from the PSE computations

documented in Part 1, we investigate the region where a purely stationary crossflow disturbance saturates for

its secondary instability characteristics utilizing developed global and local eigenvalue solvers that are based

on the Implicitly Restarted Arnoldi Method, and a Newton-Raphson technique, respectively. The main

focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain

experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances,

on the routes by which high-frequency disturbances enter the boundary layer, as well as on gaining more

information about threshold amplitudes for the growth of secondary disturbances.

Key words, crossflow, Floquet theory, secondary instability, implicitely restarted Arnoldi method

Subject classification. Fluid Dynamics

1. Introduction. In the present work, secondary instability is defined as the linear instability of a

periodic secondary flow. Due to the nonlinear interaction and saturation of primary stationary disturbances,

highly inflectional velocity profiles arc formed in all coordinate directions as documented in the first part of

the present paper. According to Orszag and Patera [16], these inflectional profiles are the origin of this in-

viscid instability to high-frequency disturbances that is inherently three-dimensional. Once the disturbances

reached a certain threshold amplitude, their explosive growth rapidly leads to transition.

Herbert [7] presented results from an investigation of the secondary instability in plane channel flow.

Incorporating the shape-assumption and starting from equilibrium solutions, he solved the linearized dis-

turbance equations as an eigenvalue problem using Floquet theory. He found that the three-dimensional

secondary disturbances travel at slightly different phase speeds than the primary two-dimensional distur-

bances. He further determined threshold amplitudes for the onset of different secondary instability modes

for primary disturbance amplitudes of less than one percent of the freestream velocity and argued that the

threshold amplitude physically represents a minimal vorticity concentration that must overcome the viscous

damping of the secondary instabilities. Finally, he pointed out that there is an intricate connection between

linear and secondary instability modes that is revealed by considering the limit of a zero amplitude of the

primary disturbance.

Reed [14] investigated the existence of a parametric resonance in the region of a finite-amplitude crossflow

vortex for flow conditions adapted to the swept flat plate experiment by Saric and Yeates [15]. Using the

parallel flow assumption for the mean flow, neglecting the mean flow distortion as well as the amplitude

variation in the streamwise direction due to the primary disturbances, and finally superimposing two three-

dimensional secondary waves in a moving frame of reference on this flow, she established a Floquet system

that was solved using a spectral collocation method. An unstable structure corresponding to the second

*Old Dominion University, Department of Aerospace Engineering, Norfolk, VA 23529 (current emails: arik. j aake@dlr.de,

pbala©icase.edu). This research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-97046 while the second author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681.



harmonicof theprimarydisturbancewasfoundawayfromthewall,andtheresultscloselyreproducedthe
experimentallyobservedmodificationof thedominantwavelengthbySaricandYeates.

Fromhisclassicalexperimentonasweptcylinder,Poll [17]reportedoccasionalinstanceswherehigh-
frequencydisturbancesweremeasuredontop of theprimarydisturbances.Thefrequencyofthesedistur-
banceswasanorder-of-magnitudehigherthanthefrequencyoftheprimarydisturbances.In theexperimental
workbyKohamaetal. [9]andbyTakagiandItoh [18],it waspointedout that the high-frequency secondary

instability originates away from the wall in regions of high vorticity and shear at normal locations of about

half the boundary layer thickness. Moreover, Deyhle and Bippes [4] mentioned observations of an explosive

growth of traveling modes at the very end of the transition process that looked like a bursting of individual

stationary vortices. They also measured a high-frequency disturbance of/*=2.1 kHz riding on top of the

primary waves prior to the local breakdown to turbulence.

Numerical results by Balachandar et al. [1] for rotating-disc flow and by Malik et al. [13] for Swept

Hiemenz Flow showed that there are several unstable secondary eigenvalues present in the region of nonlinear

saturation, and that the developing instability structures travel on the back of the primary stationary

crossflow vortices. Their growth was attributed to combined vortex stretching and tilting in the presence

of strong flow gradients. Both for rotating-disc flow as for Swept Hiemenz Flow, the inclination of the

secondary instability structures with respect to the constant phase lines was determined between 40°_50 °.

In contrast to the small threshold amplitudes found by Herbert [7] for two-dimensional boundary layers,

Balachandar et al. [1] determined threshold amplitudes of about 10% for the onset of secondary instabilities

in three-dimensional boundary layers. Also in contrast to the transition in two-dimensional boundary layers,

Balachandar et al. reported similar characteristics for the fundamental and the subharmonic secondary

disturbance type.

Wintergerste and Kleiser [19] presented results from a temporal DNS computation of the transition

process in the DLR Experiment. In the region of nonlinear saturation, they reported the development of

a secondary crossflow vortex close to the wall, which is in qualitative agreement with the PSE results by

Malik et al. [13]. Continuing their simulation further into the transition process, Wintergerste and Kleiser

found that the secondary vortex initiated a vortex-splitting into smaller wavelength structures that caused

the turbulent breakdown shortly thereafter.

A qualitatively new result indicating the existence of algebraically amplified modes in the otherwise

convectively unstable Blasius boundary layer was presented by Koch [8]. Computing nonlinear equilibrium

solutions at finite Reynolds numbers using numerical bifurcation theory, he examined the secondary insta-

bility of the such obtained modified mean flow using Floquet theory. In contrast to previous work, the

nonlinear computation of the modified mean flow allowed him to omit the shape assumption. Investigating

secondary disturbances that travel with the same phase speed as the primary disturbances (phase-locked),

Koch found the existence of links between several unstable modes (coalescence) and of a modal degeneracy.

The latter is defined as the coincidence of two or more eigenvalues and their eigenvectors that leads to a

locally algebraic growth of these disturbances. It is this mechanism that might explain the experimentally

observed explosive growth of high-frequency disturbances in the late stages of the transition process.

In summary of the presented review, the secondary instabilities are seen as high-frequency disturbances

that originate from regions of high shear and vorticity away from the wall and that grow explosively within

a short streamwise distance. Their frequency is usually in the kHz-range, which is an order-of-magnitude

higher than the frequency of the most amplified primary traveling disturbances and in accordance with the

typical local time scale t* = 5*/U_ in the region of the nonlinear saturation. The explosive growth of



thehigh-frequencydisturbancestheninitiatesabreak-upof the large-scale crossflow vortex structures into

smaller wavelength vortices that is immediately followed by the breakdown to turbulence. From the above,

it is clear how the secondary instability to high-frequency disturbances develops. Important open questions

regard threshold amplitudes necessary for a self-sustained growth of the high-frequency disturbances, and the

route by which the high-frequency disturbances enter the boundary layer before their amplitude is explosively

amplified by the strong growth rates typical for the secondary instability.

In the present second part of this paper, we investigate the secondary instability of a mean flow that is

modified by the presence of a stationary crossflow vortex using Floquet theory. The equilibrium solutions

for the considered problems of Swept Hiemenz Flow and the DLR Transition Experiment are computed

using the Parabolized Stability Equations (PSE), as described in Part 1. The formulation of the Floquet

theory is introduced in Section two. Starting with a brief summary of the observations in Part 1, Section

three presents results from a temporal analysis of the secondary instability of Swept Hiemenz Flow. Here,

the emphasis is on the routes by which the secondary disturbances enter the boundary layer, and on their

threshold amplitudes. Section four contains similar results for the DLR Experiment. There, however, the

focus is on the existence of multiple eigenvalues in the region of nonlinear amplitude saturation.

2. Floquet Theory. A Floquet system is defined to be a system of linear ODE's whose coefficients are

periodic in the independent variables. Floquet Theory was, for example, applied by Herbert [7] to explain

the nonlinear transition process in two-dimensional boundary layers, by Reed [14] for a swept flat plate

boundary layer, as well as by Fischer and Dallmann [5] for the DLR Transition Experiment.
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FIG. 2.1. Coordinate systems and wave angle definitions

Using Floquet theory, we investigate the stability of a new mean flow consisting of the original basic flow

and the saturated primary disturbance wave. We define a new Galilean coordinate system (251, _5=,xs) that

travels with the phase velocity in the xl-direction. The coordinate _?_ is aligned with the constant phase lines

as shown in Figure 2.1. In this coordinate system, the new mean flow Q2 = { U2, W_, V2, p=}T is formed

by a superposition of the parallel base flow Qo(xs) and the solutions of the primary disturbance quantities



obtainedfromaPSEcomputation.In equation2.1,c_s is the real wave number in the i2-direction. Its deft-

oo

(2.1) Qs(x,,_s) =Qo(._s)+ Z u#..__'is)'e "_a_'
tn_--O0

(2.2) as = sgn(_)_/c_el,,._t+fie 1 ; _I = tan-'( 81 )
Ol , ,real

nition is given in equation 2.2, where _, is the wave angle of the primary disturbances. By forming the

mean flow Qs as described above, the neglect of the mean flow distortion (shape assumption) and the

assumption of an arbitrary amplitude of the primary disturbance utilized in previous work ([7], [5]) are

avoided. The temporal stability of this mean flow is investigated by seeking a disturbance of the form shown

in equation 2.3. There, the new vector of unknowns q3 consists of the four primitive variables us, ws, vs

and Ps. Further, the real part of as measures the growth of the secondary instability, its imaginary part

determines the frequency, and f_s is the real wave number tangential to the constant phase lines.

oo

(2.3) qs(x,,xs,_s,t) = e "st+i#se" Z _s..[_'xs)'eime_'
m_--O0

Substituting equations 2.1 and 2.3 for Vo and v,, respectively, into the Navier-Stokes equations in

disturbance form (see Part 1), dropping the nonlinear term (v_ • V) vl and introducing a new vector of

unknowns Am={as=, Oas=/Ols, _s.., &bsJOes, Os.,, P3m} T, we obtain a linear system of ODE's for the

vector of the secondary disturbance eigenfunctions A. The resulting equations for all the Fourier modes are

given in equations 2.4 - 2.17, where A is a 6.(2.M+1) vector at the normal location k.

(2.4) OAI_ OAs..
O_s -As" ; O_s - A_" ;

(2.5) OAs=
O_s

(2.6)

(2.7)

(2.8) OA4.,
O:_s

(2.9)

(2.1o)

(2.11)

(2.12)

(2.13)

(2.14)

OAs.,

O_s

OA6_

O_s

-- {AA1. + imas.Ae. + (Z Us., )(Z inlet3-, A,., ) +

(X ws.,)(,8,E A,.,)+(X vs.,)(XA,.,)+
t'O'l ti1 _O'l tit

OUe., )}Re ;
(_-_ A_=, )(_-_ in, as., Us., ) + (_-_ As., )(_--_

_1 nt 77_ 1 tl t

- {AAs= + i/3sAe.. + (Z Us=,l(Zin'°_s-, As., 1+
Err I tl t

(Z Ws.,)(i_s Z As.,)+ (Z A4..,)(Z V,.,) +
_1 ti1 1111 ti1

+ (Z As'.,)(Z OW_., )} Re

?q_l nl

(Z Ws.,
10'1 til

imc_sA,= - i_sAs= ;

1 .

AAs_ - -_ee(,mas=Ae= + ijSs A4.,) -

(Z U_",)(Z in, as. As.,)- (Z W,,.,)(i_3s Z As.,)+
tTg l ti1 rt_ l _1

(Z V,., )(Z in, as., A,., ) + (_ Vs., )(il?s Z As., ) -
_1 ti l 17_ I ti1



(2.15) (EAl.,)(Einlas., v_.,)-(EAs_,)(E--_s ) ;

(2.16) A=-_e(ra as +_3s)+a s ;

OA
(2.17) - fi, A

0_s

Collecting terms with the same Fourier component, writing equations 2.4 - 2.16 in the entire wall-

normal domain, and employing a fourth-order-accurate compact scheme formulation, we obtain a generalized

eigenvalue problem of the form given in equation 2.18. In fact, the two-point, fourth-order accurate compact

scheme formulation applied here ([12]) yields the non-trivial case of a singular, non-symmetric, and semi-

positive-definite generalized eigenvalue problem. The leading dimensions of the coefficient matrices Ji and/_

in equation 2.18 can easily reach significant orders. For example, considering a minimal problem size for a

satisfactory resolution in both the Fourier space and the wan-normal direction, a leading matrix dimension

of 9.6-71=3834 is obtained by distributing 71 points in the normal direction and truncating the Fourier series

at M=4. Hence, the need for efficient eigenvalue solvers is obvious.

(2.18) JiA = as[_A

Utilizingthe QZ-algorithm that isimplemented in the ZGEGV-routine availablein the public-domain

software librarykAPACK proved to be extremely CPU-time intensivefor these matrix dimensions. For

example, it takes about five CPU-hours on a Sun-Ultra-2 workstation (333 MHz) to compute the entire

eigenvalue spectrum of a problem with a leading matrix dimension of 2700. Therefore, we adapted the

recently developed Implicitly Restarted Arnoldi Method ([11]) to the present problem. The method is

available as a part of the public-domain software library ARPACK. It approximates the eigenvalues and

eigenvectors in specified regions of the eigenvahie spectrum. Applying this method to a problem size of 5000,

the required CPU-time to compute 10 eigenvalues that are located in a selected region of interest amounts

to only one minute on the workstation quoted above.

For a confirmation of the eigcnvalues obtained from the global solver, we developed a local eigenvalue

solver based on a Newton-Raphson technique. The solution method is based on a two-point, fourth-order-

accurate compact scheme formulation ([12]), and the solution algorithm allows for several iteration options

in order to account for the presence of (2.M+1) eigeumodes in the coefficient matrices. The iteration is

performed at the wall-normal location where the most dominant secondary eigeumode has its maximum.

There, we drop either one of the momentum equations, or the continuity equation, solve the block-tridiagona]

system, and check the convergence by evaluating the dropped momentum, or continuity equation. Hence,

the developed solution method is capable of iterating on different eigenmodes of the unknowns us, ws and

vs at a specified wall-normal location.

3. Swept Hiemenz Flow. Provided that a mean flow exists that is modified by a saturated crossflow

vortex, the secondary instability originates from the locations of high shear and vorticity away from the

wall. This is seen in Figure 3.1 where we plot the vorticity of the total flow quantity Q2 that is computed

according to equation 3.1.

,l(ow  
(3.1) Ial=V\0xs I +\-_x_] +\Ox, ] + \Ox_] + \Ox, ] +\Oxsj

At the streamwise location of Re=643.5, a high vorticity concentration is seen at normal locations

between xs _ 1 and xs -- 2, which corresponds to about half the boundary layer thickness. Also seen are



the footprint of the stationary primary crossflow vortex at the wall that corresponds to the streaks of oil or

china-clay observed in experiments, as well as a developed secondary crossflow vortex close to the wall that

shows as A-shape structure at Re=--643.5.
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FIG. 3.1. Total vorticity in the presence of a stationary crossIlow vortex

The temporal investigation of the secondary instability is started at the streamwise location where

Re=546. At this location, the stationary disturbance of an initial amplitude 1i8---0.1% has fully saturated and

reached an amplitude level of 48=24% for the ul-component (see Figure 3.2 in Part 1). The computations

presented here are limited to a maximal number of eight modes (m -- -8,-..,8) in the Fourier approximation.

However, Malik et al. [13] showed that including 16 modes does not change the results qualitatively. Further,

the results presented consider the fundamental type of secondary disturbances only. This restriction of the

work is supported by the findings of Balachandar et al. [1] for the three-dimensional boundary layer of a

rotating-disc flow where they did not find a qualitative difference between the behavior of fundamental and

subharmonic secondary disturbances.

The computational grid applied in the present computations is described as follows. For the same

computational domain as in Part 1, where the freestream boundary conditions were enforced at a normal

extension of about 10 boundary layer thicknesses, the total number of points is decreased from 141 to 81.

Also, the grid is now stretched in the entire domain according to equation 3.2 such that the number of points

within the boundary layer is 50. For the local solution method, the iteration can be performed on either the

continuity equation, or one of the momentum equations. Additionally, the disturbance mode to be iterated

A.T/
(3.2) xs ----

1+ a

on can be specified. Table 1 presents the findings from a grid refinement study. Shown are results from

the local method for different grids and iteration options. The guess values from the second-order-accurate



global method for the two different numbers of points are given by as=(0.0267,-1.2043) for 71 points, and

as=(0.0262,-1.2073) for 81 points. The results of the fourth-order-accurate local method vary only in the

fourth decimal place, and thus, the grid resolution is considered satisfactory.

TABLE 3.1

Grid study at Re=546, cis=-0.508, _s=0.9, Mode=-I

A Points Equation _s,ma_ as

3 71 continuity 44

3 71 _s-mom. 44

5 71 continuity 44

5 71 _s-mom. 44

3 81 continuity 55

5 81 continuity 55

(0.021652,-1.212607)

(0.021652,- 1.212607)

(0.021779,- 1.212359)

(0.021779,-1.212359)

(0.021715,-1.212264)

(0.021729,-1.212671)

In general, there will be several unstable eigenmodes for a given wave number at a streamwise location.

Thus, a scan of the complex as-plane for a wave number of _3 =0.8 is performed first. Here, the global method

provides the guess values that are checked for using the local solver. All eigenvalues that were found within

the scanned domain are plotted in Figure 3.2. Even though they appear clustered around as=(0.,-1.), there
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FIG. 3.2. Temporal eigenvalue spectrum at Re=546

is no obvious connection between the positive (unstable) real parts. For the chosen parameters, this isolated

appearance indicates that there are no multiple eigenvalues present in the flow. The five detected unstable

eigenvalues are given in the order of increasing frequency in Table 3.2. It is seen that the unstable secondary

frequencies are an order-of-magnitude higher than the frequency considered in Part 1 (F=0.75.10-4).

The shape-functions of the five unstable modes are shown in Figure 3.3. Plotted is the summation of

eight Fourier components of the wave number c_s in the Galilean coordinate system. It is observed that

the shape-functions of the different modes vary widely in features like the location of the maximum in the

normal direction, the largest disturbance component, the magnitude, the presence of multiple peaks, and the



TABLE 3.2

Unstable eigenvalues Re--5,_ 6, a3 =-0.508, t3s --0. 8

Mode as F---a s,_,,ag / l_e

1 (0.0113,-0.5160) 1.03.10 -3

2 (0.0030,-0.8566) 1.71.10 -3

3 (0.0467,-0.9595) 1.92.10 -3

4 (0.0218,-1.0838) 2.16.10 -3

5 (0.0021,-1.1205) 2.24.10 -3

extension into the outer flow. Of special interest are Modes 4 and 5, as well as the most unstable Mode 3.

Because of their flail shape-profiles, Modes 4 and 5 might be easier detected in experiments than the other

three modes that show a more narrow and fluctuating shape. For Mode 4, in particular, it is noted that the

component tangential to the constant phase lines has a shape that is very similar to the experimentally and

numerically observed profile in the DLR Transition experiment at xI/c=0.80 Fischer and Dallmaun [5]).

For that reason, most of the following studies consider Mode 4.

In Figure 3.4, the shape-functions of the individual Fourier components are given for Mode 4. Plotted are

the normalized quantities for the first seven modes. It is observed that the disturbance component tangential

to the constant-phase lines (0-Mode) shows a double peak structure for both wall-parallel disturbance

quantities. The maximal disturbance quantity is found for the _s-component at _?s -_ 3, where its normalized

value I_,s,ol/I,_s,to_,,_l,,,=_- 1.

While studying the origin of the secondary instability, other important _luestions address the existence of

a link between the eigenmodes of the undisturbed mean flow, investigated by the linear stability theory, and

the unstable secondary eigenmodes, investigated by Floquet theory, and also the magnitude of the threshold

amplitudes at which the secondary disturbances become unstable. In order to investigate these questions,

the amplitude of the stationary disturbances obtained from the nonlinear stability analysis in the previous

section is set to A=I.O for the given Reynolds number. Then, by gradually decreasing A to zero, the variation

of the eigenvalues is monitored. During the computations, the evolution of the shape-functions is followed in

order to assure that no jumps to different eigenvalues occur. A typical step size in the amplitude is AA=O.O1,

and the computations are continued until the local method ceases to converge.

For a Reynolds number of Re=546, a value of A:I corresponds to amplitudes of .4_=24%, _1_=17_ and

A,=l% for the ul-, w_- and vl-disturbance components of the primary stationary vortex, respectively. In

Figure 3.5, the variation of the eigenvalues as=(as,_al, as,,mag) versus a decreasing amplitude A is shown

for the five unstable eigenvalues at A=I. Additionally, the eigenvalues of the undisturbed parallel mean

flow Qo(xs) are shown in the relevant as-range. It turns out that only one of the five unstable eigenvalues

at Re=546 has a link to the eigenvalue spectrum of the undisturbed mean flow. This connection could be

established for Mode 1, the mode with the lowest unstable secondary frequency (F=1.03-10-3). As seen in

Figure 3.5, the variation of the eigenvalues with decreasing amplitude A takes very different routes. For

example, the highest frequency mode (Mode 5) becomes stable at a threshold amplitude of Athres=0.98.

Shortly thereafter, the iteration for an eigenvalue ceases to converge. On the other hand, Modes 2 and 3

could be followed further until A-_0.1. The threshold amplitudes for Modes 1-4, respectively, are A_h,_s=0.88,

Athos=0.95, Ath,_s=0.31, A_,_s=0.55. Thus, this analysis predicts the onset of a secondary instability due

to Mode 3 already for stationary disturbance amplitudes of .4s=0.31.24%=7.5% and .4_=0.31.17_0=5_0 for

the ul- and wl-components, respectively. The corresponding values for Mode 4 are ._=0.55.24%=13% and
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In order to investigate the eigenmode variation in the amplitude range where the eigenvalue computa-

tion stops converging, the next study examines the decay of the individual disturbance components at the

freestream boundary. Thereby, it can be determined whether the convergence problems are due to an insuf-

ficient grid resolution, or if they are part of the physics of the investigated problem. In the present stability

formulation, a complex eigenvalue reaches the continuous spectrum when the corresponding eigenfunction

does not decay in the freestream and is of rather oscillatory nature ([2]). In the following, the method of the

investigation is described, and results are presented for the Modes 1 and 4.

In Floquet theory, we seek a solution to the linear eigenvalue problem that is written as in equation 2.17

(see Section two), where the elements of the coefficient matrix Jt are determined from a nonlinear PSE

computation. Since the coefficients of the matrix are not constant in the entire domain, one usually solves
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FIG. 3.4. Shapes of the secondary instability eigenfunctions /or Mode 4 at Re=546

the eigenvalue problem using a Newton-Raphson technique. Here, however, the focus is on the eigenvalues of

A at the freestream boundary where the primary disturbance quantities are zero, and thus, the coefficients of

the matrix A are constant. Therefore, the behavior of the secondary disturbances at the freestream boundary

can be investigated by finding the eigenvalues of the submatrix fi'n at the maximal normal extension of

the computational domain. The dimension of the submatrix .4,_ depends on the number of considered

Fourier modes in the Floquet analysis and is determined to (2./14+1).6 for the six components of the vector

of unknowns (see Section two). Considering eight Fourier modes in the analysis, the complex and non-

symmetric coefficient matrix/i,, consists of 102×102 elements. If the eigenvalue problem to be solved is

well-posed, one obtains 51 positive and 51 negative eigenvalues which are distributed almost symmetrically

about the imaginary axis. In Figure 3.6a), the eigenvaluc spectrum at the freestream boundary of Mode 4

is shown for an amplitude of A=I. In that case, none of the eigenvalues has a zero real part, the secondary

disturbances decay in the freestream, and the iteration for an eigenvalue of the entire problem converges.

TABLE 3.3

Eigenvalue characteristics at the _eestrearn boundary for Mode

A 1.0 0.8 0.6 0.4 0.38 0.36 0.34

#ofA,-eal,_ > 0 51 51 51 51 51 51 53

#ofA,_,,t,i < 0 51 51 51 51 51 51 49

(,kreal,i)min 0.8 0.8 0.8 -0.16 -0.078 -0.011 0.0066

When approaching the continuous spectrum, however, the real part of the eigenvalue closest to the

imaginary axis tends towards zero, and the well-posedness of the eigenvalue problem is violated by an

10



f............ilj i

-0.1{ .... = .... i .... = .... _,,,,

0.0 0.2 0.4 0.6 0.8 1.0

A

1.21 .... i .... i .... i .... i ....

I ....

| ...............................................

0.9 r ......................................

"(_3,i [ o Ur',_r

I -- U,_,,1

......... Mode2

0.6_- ......... Mode3

Mode 4

....... Mode5

..... i .... i .... i .... i ....

0.0 0.2 0.4 0.6 O.B 1.0

A

FIc. 3.5. Growth rates and frequencies of the secondary disturbances vs. the amplitude A (Re=5g6, c_s---0.508, j3s=0.8)

a) b)

15

10

5

_lmag 0

-5

-10

-15

i F r
i

o o°
o

o°° o
o

o , (+-0.800,0.000) o
o

o

°o _o°
oi

c

e : e

o o
i 0

o i o
o o

o o , o
o

, , , , , I._0 0 ,;

15

10

5

_Irnag 0

-5

-10

-15

I I i

i ° o°°
o

oi (o.o_o32.4eso)°° o o

o / oo o

o o

o \oo o

o o
o o

o ; (0.0066,-2,4950) o
00

° oo°

' '-_0 .... ; .... ;0' '
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imbalance of the eigenvalues with a positive and negative part. This is seen in Figure 3.6b), where the

eigenvalue spectrum at the freestream boundary of Mode 4 is shown for an amplitude of A-_0.34. There

are two eigenvalues close to the imaginary axis which indicates that the disturbances do not decay in the

freestream. Further, tables 3 and 4 list the number of eigenvalues with positive and negative real parts in

the spectrum, as well as the magnitude of the eigenvalues closest to the imaginary axis for the Modes 1 and

4 in dependence of the amplitude A. It is seen that the eigenvalues of Mode 4 join the continuous spectrum

at an amplitude of A=0.34, whereas the Mode 1 indeed reaches the linear eigenvalue spectrum, as stated

earlier.

In Figure 3.7, the normalized total shape-hmctions of the ws-component of Mode 1 are given for different

11



TABLE 3.4

Eigenvalue charactemstics at the freestream boundary for Mode 1

A 1.0 0.8 0.6 0.4 0.2 0.1 0.01

#ofA,__at,, > 0 51 51 51 51 51 51 51

--g:ofA,_al,i < 0 51 51 51 51 51 51 51

(A,_t,,),_,_ 0.8 0.8 0.8 0.8 0.8 0.8 0.8

amplitudes. It is seen that the shape-functions for the different amplitudes indeed belong to the same family

of eigenmodes. Comparing the linear shape-function with the nonlinear shape-function at A=0.01, it is

obvious that nonlinear and linear results merge in the limit of A ---* 0.
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FIG. 3.7. Shape-fiunctions [_bsl/l_bs,,_a=[ of the linear eigenmode and of Mode 1 for various amplitudes A

Next, the eigenvalues as for the different unstable modes are computed as functions of the wave number

tangential to the stationary vortex at Re=546. In particular, three of the five unstable eigenmodes at j3s--0.8

are traced through their unstable wave number range. Figures 3.8 and 3.9 show the growth rate and frequency

development, respectively, that was obtained by closely watching the evolution of the eigenfunctions with

changing wave numbers. Thereby, it is assured that the curves for the different modes in Figure 3.8 indeed

belong to the specified modes.

From Figures 3.8 and 3.9, the following observations can be made. A wide range of unstable secondary

12
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wave numbers is present at the investigated Reynolds number. Starting at _3s=0, which corresponds to an

alignment with the primary wave vector, the disturbances turn towards the direction of the constant phase

lines with a growing wave number tangential to the stationary vortex. The dependence of the frequency on

the wave number/3s is approximately linear, which corresponds to a constant phase speed of the disturbances.

An intricate structure of the high-frequency/low-growth rate Mode 5 is observed. The growth rate behaves

in a periodic manner as a fraction of the wave number/_s. The most unstable disturbances of Modes 4 and

5 are found in the wave number range of _3=0.6 - 0.9. This corresponds to an inclination of the secondary

structures of _2=-30 ° ..- -40 ° with respect to the direction of the constant phase lines. The Modes 4

and 5 have very similar frequencies; however, the frequency curves never cross each other. Even though

the curves for the real parts (growth rates) of the different modes do cross each other, their eigenvalues

as = (as,reaZ, as,_rnag) do not coincide because of the missing corresponding crossovers of the imaginary parts

(frequencies). Thus, multiple eigenvalues were not detected at the investigated location.

13



In order to gain more insight into the spatial development of the secondary instability, a temporal

analysis at eight different streamwise positions is performed. Choosing Mode 4 at Re=546 and decreasing

the Reynolds number, this mode is traced back to its onset at Re_-475. There, the amplitude level of both

the uI- and the wl-components of the stationary vortex is .4s--11%, which closely corresponds to the results

obtained by decreasing the amplitude A for Mode 4 (see Figure 3.5). Figure 3.10 shows the secondary growth

rates at the different streamwise positions. It can be seen that the unstable spanwise wave numbers align

more closely with the direction of the wave vector kreal for a decreasing Reynolds number.
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In Figure 3.11, the most amplified secondary growth rates are plotted together with the primary growth

rates. The most unstable secondary frequencies are found in the range of F--1.0.10-3-2.0.10 -3, which is

an order-of-magnitude higher than the most amplified primary frequency of F=I.0.10 -a. Also, a linear
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developmentof thetemporalgrowthrateas,real is observed. Table 5 shows the wave numbers c_3, the

secondary growth rates, the wave numbers/_s, the wave angles of the secondary disturbances according to

the definition in Section two, as well as the dimensional frequencies of the points of maximal amplification

at the considered Reynolds number locations.

TABLE 3.5

Parameters for the most unstable disturbances of Mode 4

Re (_s as.reat,m_ /3S,as=,nax _e,_=m_ F_s=,nax " 10S

546.0 -0.508 0.0218 0.80 -32.4 ° 2.167

538.5 -0.510 0.0192 0.70 -36.1 ° 1.886

523.5 -0.513 0.0142 0.50 -45.7 ° 1.332

516.0 -0.515 0.0123 0.50 -45.8 ° 1.305

508.5 -0.517 0.0102 0.40 -52.3 ° 1.028

501.0 -0.519 0.0081 0.45 -49.1 ° 1.144

486.0 -0.524 0.0030 0.40 -52.6 ° 0.987

478.5 -0.527 0.0006 0.40 -52.8 ° 0.973

Another interesting feature in Figure 3.11 is the development of the primary and secondary growth

rates. At Re--_510, the primary and secondary growth rates are of the same order. At Re-=-546, however, the

primary growth rates are about to become stable, whereas the temporal theory predicts a continued steep

growth of the high-frequency disturbances. Looking at Figure 3.1 in Part 1 where the amplitude evolution of

the stationary disturbances was plotted, we note that the onset of the secondary instability according to the

temporal theory occurs at a location where the stationary disturbances start to saturate, and both the uI-

and the wl-components of the stationary primary disturbance have reached an amplitude level of As--11%.

4. DLR Transition Experiment. In this section, results from a temporal analysis using Floquet

theory performed at the chordwise location of xi/c=0.6 are presented. At this location, the averaged

stationary disturbance component tangential to the inviscid streamline u_,9,a,g with an initial amplitude

of A8-_0.1% at xl/c--O.1 has reached an amplitude level of A8=20% and is almost saturated. Special

attention will be directed towards the existence of multiple eigenvalues in the considered region of nonlinear

saturation that might explain the experimentally observed time-dependent occurrences of an explosive growth

of traveling disturbances ([4]).

Pursuing the sequence of global and local eigenvalue computations as described in Section three, we find

that there are more unstable eigenvalues present at this location than detected for Swept Hiemenz Flow

at the investigated locations. The results for the secondary growth rates and frequencies of three selected

modes are plotted in Figures 4.1 and 4.2. The unstable eigenvalues appear densely clustered in the wave

number range between _s=O.1 and/33=0.4. The disturbances with these wave numbers have frequencies

of f*=-500 Hz up to f*=4000 Hz (see Figure 4.2). The development of the eigenfunctions with a varying

wave number tangential to the constant phase lines /?s was followed closely in order to assure that the

plotted eigenvalues indeed belong to the same family of unstable secondary eigenmodes. In contrast to

Swept Hiemenz Flow, where neither multiple eigenvalues, nor crossing growth rate curves could be found at

the investigated locations, it can be seen in Figure 4.1 that the growth rate curves of the different modes

cross. This indicates that the algebraically unstable modes found by Koch [8] for Blasius boundary layer

flow might be also present in this three-dimensional boundary layer flow. Table 6 lists the secondary growth

15



rates,thewavenumbersf_s, the wave angles of the secondary disturbances according to the definition in

Section two, as well as the dimensional frequencies at the points of maximal amplification for the considered

modes. It is observed that the wave angle range of the most amplified secondary disturbances agrees with

the results for Swept Hiemenz Flow.
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Further, Figure 4.3 shows the total shape-functions of the most unstable secondary modes at xl/c=0.6.

Plotted are the normalized shape-functions of the disturbance velocity components for the most amplified

wave numbers/_s. Comparing the shape-functions of the unstable modes in the Swept Hiemenz Flow problem

at Re=546 and/_s=0..8 (see Figure 3.3) with the shape-functions shown in Figure 4.3, the following is noted.

First, the shape-functions at Re=-546 are fuller than the profiles obtained here. This is attributed to the
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TABLE 4.1

Parameters ]or the most unstable modes at xl /c=0.6, (v_s----O._01)

as,_,l,,_ax 13s,,s .... _,,s:m_ ]j*_=,_ax [Hz]

Mode 1 0.018001 0.35 -29.9 ° 3117

Mode 2 0.032616 0.35 -29.9 ° 2933

Mode 3 0.001906 0.19 -46.6 ° 1451

higher amplitude level of the stationary disturbances in the Swept Hiemenz Flow problem (.48,_,--24% at

Re-:-546; A8,_=20% at xl/c--0.6). Second, all the shape-functions at xl/c=0.6 show a strong maximum at

a height of xs _ 1 mm, which is equivalent to about 30% of the boundary layer thickness at this location

and can be interpreted as a formation of shear layers near xs _- 1 mm.
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From Figure 4.2 and as observed for Swept Hiemenz Flow, it appears that a linear frequency dependence

on the wavenumber/_s can serve as a first guess for a distinction of the different modes. For closely clustered

eigensolutions, however, only an additional comparison of the eigenfunctions can be a conclusive test. It

is also noted from Figure 4.2 that the frequency curves of Modes 1 and 3 cross at the same wave number

Ds=0.15 as the corresponding growth rate curves in Figure 4.1 (see Point 1.). Hence, the existence of

a multiple eigenvalue at this wave number needs further investigation. The temporal wave number at the

location where Modes 1 and 3 cross is as = (0.00146,-0.33792). This corresponds to a dimensional frequency of

f*=1145 Hz, which is about six times the most amplified frequency. In contrast, the dimensional frequencies
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at the as-locations where Modes 1 and 2 cross at _s=0.5 are f*=4561 Hz and f*=4291 Hz for Mode 1 and 2,

respectively. Even though the growth rates are similar at this wave number, the difference in the frequency

is considered too large to suspect a multiple root there.

In Figures 4.4 - 4.6, the eigenfunctions of the two crossing Modes 1 and 3 of Figure 4.1 are plotted

at three wave numbers at and near the point of their crossover. It is seen that the shape-functions of all

disturbance quantities are very similar close to the crossover location at _s--0.15. Further, the development

of the shape-functions of both modes with an increasing wave number tangential to the constant phase lines

indicates that the two modes indeed coincide. Hence, the existence of a multiple eigenvalue at xl/c=0.6 can

be concluded.
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Concluding the secondary instability analysis of the DLR Transition experiment, the structure of the

secondary instability is examined. Considering the mode with the highest frequency at xl/c=0.60 (Mode 1),

Figure 4.7 shows contours of the amplitude of the secondary eigenfunction tangential to the constant phase

lines [wsl for the most amplified wave number f_s=0.35, and iso-lines of the modified mean flow component

in that direction in the Galilean coordinate system.

Superimposing the secondary structure on a modified mean flow component W_ that is assumed to be

constant in the xl-direction, the total flow component tangential to the constant phase lines Ws = W, + ws
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is obtained. Shown in Figure 4.9 is a top view of His contours at the same wall-normal location of _s=2.2 as

in Figure 4.8, where the secondary structure is assigned an amplitude of 1%. The dark patches correspond

to lower-speed fluid traveling on the crest of the primary crossflow vortices in the _$-direction. The phase

speed of these secondary disturbances Cphase = laS,,magt/_s" U_,o/U* is Crhas e --_ 1. Depending on their

assigned amplitude, these secondary structures can severely modify the ordered primary structure of the

stationary crossflow vortex.

From the observations in Figures 4.7 - 4.9, it seems that the structure of a single-frequency secondary

instability is well defined and might be detected in experiments, if care is taken as to where the measurements

are performed in the boundary layer.

5. Conclusion. In the second part of the present paper, we studied the secondary instability originating

from a three-dimensional mean flow that is modified by the presence of purely stationary disturbances.

Starting from equilibrium solutions that were obtained from nonlinear PSE computations, we used Floquet
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theory and developed global and local solvers that are based on the Implicitly Restarted Arnoldi Method

and a Newton-Raphson technique, respectively.

For both the Swept Hiemenz Flow problem and the DLR Transition Experiment, several unstable eigen-

values were detected in the considered region of nonlinear amplitude saturation. The frequency of these

traveling secondary disturbances is an order-of-magnitude higher than for the most amplified traveling pri-

mary disturbances. In contrast to the Swept Hiemenz Flow problem, where the few detected unstable and

isolated eigenvalues indicate the dominance of a convective instability type in the transition process, the

existence of a multiple eigenvalue was documented for the DLR Experiment at a chordwise location of

xl/c=0.60. The observation of this locally algebraic instability in an otherwise convectively unstable flow

might explain the experimentally observed phenomena of a time dependent explosive growth of traveling
disturbances.

For Swept Hiemenz Flow, the existence of a link between the unstable secondary eigenvalues and both

the eigenvalue spectrum of the undisturbed mean flow and the continuous spectrum was established. It is

concluded that there are at least three different mechanisms in the region of nonlinear saturation that cause

high-frequency secondary instabilities. First, due to the action of the growing nonlinear disturbances, stable

linear eigeumodes of the undisturbed mean flow are modified such that they develop into unstable secondary

eigeamodes. Second, an inviscid high-frequency instability originates from the highly inflectional character of

the modified mean flow profiles. Third, due to a not yet investigated receptivity mechanism, high-frequency

disturbances from the continuous spectrum present in the outer flow enter the strongly distorted boundary
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layer in the region of nonlinear amplitude saturation. This corresponds to observations by Choudhari et

al. [3], where they allocated the receptivity mechanism to regions of a strong variation in the boundary

layer thickness. However, it is understood that the second mechanism represents the prevailing path to the

transition in a crossflow instability dominated boundary layer.

Further considering Swept Hiemenz Flow, an unstable secondary mode at Re=546 was traced back to its

critical point by gradually decreasing the Reynolds number. The onset of this secondary instability was found

at R_475 in a region where the primary stationary disturbances are about to saturate. The amplitudes

of both the ul- and wl-disturbance components of the stationary crossflow vortex at this Reynolds number

are/]8 ---- 11%. This value agrees well with the prediction of the threshold amplitudes necessary for a self-

sustained growth of the secondary disturbances of Mode 4 as obtained by artificially decreasing the primary

disturbance amplitudes at Re=546 (-48 -- 13%). Other detected eigenvalues at Re=546 become unstable at

threshold amplitudes of the primary disturbances as low as .4s--5_0 (Mode 3). Hence, secondary instabilities

with small growth rates can be assumed to be present in a crossflow instability dominated flow even before

the primary disturbances start to saturate. The impact of these weak secondary instabilities on the overall

transition process, however, needs further investigation.

For both investigated flows, the obtained wave angles of the most unstable secondary disturbances

closely correspond to previous work ([1], [13]). The most amplified secondary structures are inclined at

angles between _=-30 ° and _$---55 ° with respect to the direction of the constant phase lines. Future

work related to the research presented in Parts 1 and 2 will particularly focus on modeling the secondary

instability more straightforwardly using the nonlinear PSE.
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